Nuprl Lemma : real-matrix-times_wf

[n,a,b:ℕ]. ∀[A:ℝ(a × n)]. ∀[B:ℝ(n × b)].  ((A*B) ∈ ℝ(a × b))


Proof




Definitions occuring in Statement :  real-matrix-times: (A*B) rmatrix: (a × b) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  rmatrix: (a × b) uall: [x:A]. B[x] member: t ∈ T real-matrix-times: (A*B) nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s]
Lemmas referenced :  rsum_wf subtract_wf rmul_wf subtract-add-cancel int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-less_than int_seg_wf real_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality setElimination rename because_Cache hypothesis applyEquality hypothesisEquality dependent_set_memberEquality_alt productElimination independent_pairFormation imageElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType productIsType addEquality axiomEquality equalityTransitivity equalitySymmetry functionIsType isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[n,a,b:\mBbbN{}].  \mforall{}[A:\mBbbR{}(a  \mtimes{}  n)].  \mforall{}[B:\mBbbR{}(n  \mtimes{}  b)].    ((A*B)  \mmember{}  \mBbbR{}(a  \mtimes{}  b))



Date html generated: 2019_10_30-AM-08_15_48
Last ObjectModification: 2019_09_18-PM-06_56_29

Theory : reals


Home Index