Nuprl Lemma : real-matrix-times_wf
∀[n,a,b:ℕ]. ∀[A:ℝ(a × n)]. ∀[B:ℝ(n × b)].  ((A*B) ∈ ℝ(a × b))
Proof
Definitions occuring in Statement : 
real-matrix-times: (A*B)
, 
rmatrix: ℝ(a × b)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
rmatrix: ℝ(a × b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-matrix-times: (A*B)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
rsum_wf, 
subtract_wf, 
rmul_wf, 
subtract-add-cancel, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
int_seg_wf, 
real_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
productElimination, 
independent_pairFormation, 
imageElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
productIsType, 
addEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[n,a,b:\mBbbN{}].  \mforall{}[A:\mBbbR{}(a  \mtimes{}  n)].  \mforall{}[B:\mBbbR{}(n  \mtimes{}  b)].    ((A*B)  \mmember{}  \mBbbR{}(a  \mtimes{}  b))
Date html generated:
2019_10_30-AM-08_15_48
Last ObjectModification:
2019_09_18-PM-06_56_29
Theory : reals
Home
Index