Nuprl Lemma : rinverse-nonzero

x:ℝ(x ≠ r0  (r1/x) ≠ r0)


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  rmul-rdiv-cancel2 req_weakening rmul-zero-both rless_functionality rmul_wf rless-int real_wf rneq_wf rmul_preserves_rless rless_wf int-to-real_wf rdiv_wf rmul_reverses_rless_iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin inlFormation cut lemma_by_obid dependent_functionElimination isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality natural_numberEquality independent_functionElimination productElimination sqequalRule inrFormation independent_pairFormation introduction imageMemberEquality baseClosed addLevel

Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  (r1/x)  \mneq{}  r0)



Date html generated: 2016_05_18-AM-07_24_29
Last ObjectModification: 2016_01_17-AM-01_57_01

Theory : reals


Home Index