Nuprl Lemma : rinverse-nonzero
∀x:ℝ. (x ≠ r0 
⇒ (r1/x) ≠ r0)
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
rmul-rdiv-cancel2, 
req_weakening, 
rmul-zero-both, 
rless_functionality, 
rmul_wf, 
rless-int, 
real_wf, 
rneq_wf, 
rmul_preserves_rless, 
rless_wf, 
int-to-real_wf, 
rdiv_wf, 
rmul_reverses_rless_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
inlFormation, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
inrFormation, 
independent_pairFormation, 
introduction, 
imageMemberEquality, 
baseClosed, 
addLevel
Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  (r1/x)  \mneq{}  r0)
Date html generated:
2016_05_18-AM-07_24_29
Last ObjectModification:
2016_01_17-AM-01_57_01
Theory : reals
Home
Index