Nuprl Lemma : rleq-iff-rleq2
∀x,y:ℝ.  (x ≤ y 
⇐⇒ rleq2(x;y))
Proof
Definitions occuring in Statement : 
rleq2: rleq2(x;y)
, 
rleq: x ≤ y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
rleq2: rleq2(x;y)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
real: ℝ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
le: A ≤ B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
rleq2_wf, 
rleq-iff, 
rleq_wf, 
iff_wf, 
all_wf, 
nat_plus_wf, 
exists_wf, 
int_upper_wf, 
le_wf, 
subtract_wf, 
less_than_transitivity1, 
less_than_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
addLevel, 
productElimination, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
multiplyEquality, 
minusEquality, 
natural_numberEquality, 
applyEquality, 
dependent_set_memberEquality, 
independent_isectElimination
Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  rleq2(x;y))
Date html generated:
2016_05_18-AM-07_15_27
Last ObjectModification:
2015_12_28-AM-00_42_27
Theory : reals
Home
Index