Nuprl Lemma : rleq-iff-rleq2

x,y:ℝ.  (x ≤ ⇐⇒ rleq2(x;y))


Proof




Definitions occuring in Statement :  rleq2: rleq2(x;y) rleq: x ≤ y real: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] rleq2: rleq2(x;y) iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] real: rev_implies:  Q so_lambda: λ2x.t[x] nat_plus: + int_upper: {i...} le: A ≤ B guard: {T} uimplies: supposing a so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  rleq2_wf rleq-iff rleq_wf iff_wf all_wf nat_plus_wf exists_wf int_upper_wf le_wf subtract_wf less_than_transitivity1 less_than_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality because_Cache addLevel productElimination impliesFunctionality dependent_functionElimination independent_functionElimination sqequalRule lambdaEquality multiplyEquality minusEquality natural_numberEquality applyEquality dependent_set_memberEquality independent_isectElimination

Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  rleq2(x;y))



Date html generated: 2016_05_18-AM-07_15_27
Last ObjectModification: 2015_12_28-AM-00_42_27

Theory : reals


Home Index