Nuprl Lemma : rneq-function

f:ℝ ⟶ ℝ((∀x,y:ℝ.  ((x y)  (f[x] f[y])))  (∀x,y:ℝ.  (f[x] ≠ f[y]  x ≠ y)))


Proof




Definitions occuring in Statement :  rneq: x ≠ y req: y real: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uimplies: supposing a prop: uall: [x:A]. B[x] so_apply: x[s] so_lambda: λ2x.t[x] or: P ∨ Q not: ¬A guard: {T} false: False iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  real-weak-Markov rneq_wf real_wf all_wf req_wf rneq-cases not_wf rneq_irreflexivity rneq_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_isectElimination because_Cache hypothesis isectElimination applyEquality functionExtensionality sqequalRule lambdaEquality functionEquality independent_functionElimination unionElimination inlFormation inrFormation voidElimination productElimination

Latex:
\mforall{}f:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}.  ((\mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))  {}\mRightarrow{}  (\mforall{}x,y:\mBbbR{}.    (f[x]  \mneq{}  f[y]  {}\mRightarrow{}  x  \mneq{}  y)))



Date html generated: 2017_10_03-AM-09_11_39
Last ObjectModification: 2017_06_26-PM-01_50_51

Theory : reals


Home Index