Nuprl Lemma : rv-extend-2

n:ℕ. ∀a,b,c,d:ℝ^n.  (a ≠  (∃x:{x:ℝ^n| bx=cd} (c ≠  a-b-x)))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] prop: uall: [x:A]. B[x] rv-between: a-b-c and: P ∧ Q real-vec-sep: a ≠ b subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rless: x < y sq_exists: x:{A| B[x]} rge: x ≥ y guard: {T}
Lemmas referenced :  rv-extend real-vec-sep_wf rv-between_wf real-vec_wf nat_wf real-vec-dist-between int-to-real_wf real-vec-dist_wf real_wf rleq_wf radd_wf rless_functionality req_weakening real-vec-dist-nonneg trivial-rless-radd rless_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination dependent_pairFormation isectElimination functionEquality setElimination rename independent_pairFormation natural_numberEquality applyEquality lambdaEquality setEquality sqequalRule because_Cache independent_isectElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.    (a  \mneq{}  b  {}\mRightarrow{}  (\mexists{}x:\{x:\mBbbR{}\^{}n|  bx=cd\}  .  (c  \mneq{}  d  {}\mRightarrow{}  a-b-x)))



Date html generated: 2016_10_26-AM-10_40_02
Last ObjectModification: 2016_09_26-PM-09_21_04

Theory : reals


Home Index