Nuprl Lemma : series-sum_functionality
∀x,y:ℕ ⟶ ℝ. ∀a,b:ℝ.  ({Σn.x[n] = a 
⇒ Σn.y[n] = b}) supposing ((a = b) and (∀n:ℕ. (x[n] = y[n])))
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
series-sum: Σn.x[n] = a
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
nat_wf, 
converges-to_functionality, 
rsum_wf, 
int_seg_subtype_nat, 
false_wf, 
int_seg_wf, 
req_wf, 
all_wf, 
real_wf, 
le_wf, 
req_weakening, 
req_functionality, 
rsum_functionality2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
functionExtensionality, 
hypothesis, 
independent_functionElimination, 
rename, 
natural_numberEquality, 
setElimination, 
addEquality, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
functionEquality, 
dependent_set_memberEquality, 
intEquality, 
productElimination
Latex:
\mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,b:\mBbbR{}.    (\{\mSigma{}n.x[n]  =  a  {}\mRightarrow{}  \mSigma{}n.y[n]  =  b\})  supposing  ((a  =  b)  and  (\mforall{}n:\mBbbN{}.  (x[n]  =  y[n])))
Date html generated:
2016_10_26-AM-09_19_27
Last ObjectModification:
2016_08_26-PM-01_50_35
Theory : reals
Home
Index