Nuprl Lemma : series-sum_functionality

x,y:ℕ ⟶ ℝ. ∀a,b:ℝ.  ({Σn.x[n]  Σn.y[n] b}) supposing ((a b) and (∀n:ℕ(x[n] y[n])))


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a req: y real: nat: uimplies: supposing a guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] implies:  Q guard: {T} series-sum: Σn.x[n] a so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness nat_wf converges-to_functionality rsum_wf int_seg_subtype_nat false_wf int_seg_wf req_wf all_wf real_wf le_wf req_weakening req_functionality rsum_functionality2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality functionExtensionality hypothesis independent_functionElimination rename natural_numberEquality setElimination addEquality independent_isectElimination independent_pairFormation because_Cache functionEquality dependent_set_memberEquality intEquality productElimination

Latex:
\mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,b:\mBbbR{}.    (\{\mSigma{}n.x[n]  =  a  {}\mRightarrow{}  \mSigma{}n.y[n]  =  b\})  supposing  ((a  =  b)  and  (\mforall{}n:\mBbbN{}.  (x[n]  =  y[n])))



Date html generated: 2016_10_26-AM-09_19_27
Last ObjectModification: 2016_08_26-PM-01_50_35

Theory : reals


Home Index