Nuprl Lemma : sq_stable__rv-between
∀n:ℕ. ∀a,b,c:ℝ^n.  SqStable(a-b-c)
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
false: False
, 
not: ¬A
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rv-T: rv-T(n;a;b;c)
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
stable_real-vec-be, 
sq_stable__from_stable, 
sq_stable__all, 
not_wf, 
real-vec-be_wf, 
sq_stable__real-vec-sep, 
sq_stable__and, 
rv-T_wf, 
real-vec-sep_wf, 
rv-between-iff, 
nat_wf, 
real-vec_wf, 
rv-between_wf, 
squash_wf
Rules used in proof : 
voidElimination, 
lambdaEquality, 
functionEquality, 
because_Cache, 
isect_memberEquality, 
productEquality, 
promote_hyp, 
levelHypothesis, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
imageElimination, 
addLevel, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    SqStable(a-b-c)
Date html generated:
2018_05_22-PM-02_28_59
Last ObjectModification:
2018_05_21-AM-00_48_03
Theory : reals
Home
Index