Nuprl Lemma : rbinop_wf
∀[op:ℤ]. ∀[p,q:ℝ].  rbinop(op;p;q) ∈ ℝ supposing ((op = 6 ∈ ℤ) ⇒ q ≠ r0) ∧ ((op = 10 ∈ ℤ) ⇒ (r0 < p))
Proof
Definitions occuring in Statement : 
rbinop: rbinop(op;p;q), 
rneq: x ≠ y, 
rless: x < y, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
rbinop: rbinop(op;p;q), 
and: P ∧ Q, 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
prop: ℙ, 
subtype_rel: A ⊆r B
Lemmas referenced : 
rsub_wf, 
rmul_wf, 
rdiv_wf, 
rmax_wf, 
rmin_wf, 
radd_wf, 
realexp_wf, 
rless_wf, 
int-to-real_wf, 
equal-wf-base, 
int_subtype_base, 
rneq_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
int_eqEquality, 
hypothesisEquality, 
natural_numberEquality, 
extract_by_obid, 
isectElimination, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
functionEquality, 
intEquality, 
applyEquality, 
baseClosed, 
isect_memberEquality
Latex:
\mforall{}[op:\mBbbZ{}].  \mforall{}[p,q:\mBbbR{}].    rbinop(op;p;q)  \mmember{}  \mBbbR{}  supposing  ((op  =  6)  {}\mRightarrow{}  q  \mneq{}  r0)  \mwedge{}  ((op  =  10)  {}\mRightarrow{}  (r0  <  p))
Date html generated:
2017_10_04-PM-11_01_42
Last ObjectModification:
2017_07_28-AM-08_53_39
Theory : reals_2
Home
Index