Nuprl Lemma : ext-equal-presheaves-equiv-rel

[C:SmallCategory]. EquivRel(Presheaf(C);F,G.ext-equal-presheaves(C;F;G))


Proof




Definitions occuring in Statement :  ext-equal-presheaves: ext-equal-presheaves(C;F;G) presheaf: Presheaf(C) small-category: SmallCategory equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q prop: trans: Trans(T;x,y.E[x; y]) ext-equal-presheaves: ext-equal-presheaves(C;F;G) ext-eq: A ≡ B subtype_rel: A ⊆B presheaf: Presheaf(C) uimplies: supposing a top: Top cat-arrow: cat-arrow(C) pi1: fst(t) pi2: snd(t) type-cat: TypeCat cat-ob: cat-ob(C) guard: {T}
Lemmas referenced :  presheaf_wf ext-equal-presheaves_wf cat-ob_wf cat-arrow_wf small-category_wf ext-eq_weakening functor-ob_wf op-cat_wf small-category-subtype type-cat_wf subtype_rel-equal cat_ob_op_lemma functor-arrow_wf op-cat-arrow subtype_rel_self subtype_rel_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry applyEquality instantiate independent_isectElimination isect_memberEquality voidElimination voidEquality functionEquality functionExtensionality applyLambdaEquality universeEquality

Latex:
\mforall{}[C:SmallCategory].  EquivRel(Presheaf(C);F,G.ext-equal-presheaves(C;F;G))



Date html generated: 2017_10_05-AM-00_47_00
Last ObjectModification: 2017_10_03-PM-02_53_58

Theory : small!categories


Home Index