Nuprl Lemma : ext-equal-presheaves-equiv-rel
∀[C:SmallCategory]. EquivRel(Presheaf(C);F,G.ext-equal-presheaves(C;F;G))
Proof
Definitions occuring in Statement : 
ext-equal-presheaves: ext-equal-presheaves(C;F;G)
, 
presheaf: Presheaf(C)
, 
small-category: SmallCategory
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
ext-equal-presheaves: ext-equal-presheaves(C;F;G)
, 
ext-eq: A ≡ B
, 
subtype_rel: A ⊆r B
, 
presheaf: Presheaf(C)
, 
uimplies: b supposing a
, 
top: Top
, 
cat-arrow: cat-arrow(C)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
cat-ob: cat-ob(C)
, 
guard: {T}
Lemmas referenced : 
presheaf_wf, 
ext-equal-presheaves_wf, 
cat-ob_wf, 
cat-arrow_wf, 
small-category_wf, 
ext-eq_weakening, 
functor-ob_wf, 
op-cat_wf, 
small-category-subtype, 
type-cat_wf, 
subtype_rel-equal, 
cat_ob_op_lemma, 
functor-arrow_wf, 
op-cat-arrow, 
subtype_rel_self, 
subtype_rel_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
instantiate, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
functionExtensionality, 
applyLambdaEquality, 
universeEquality
Latex:
\mforall{}[C:SmallCategory].  EquivRel(Presheaf(C);F,G.ext-equal-presheaves(C;F;G))
Date html generated:
2017_10_05-AM-00_47_00
Last ObjectModification:
2017_10_03-PM-02_53_58
Theory : small!categories
Home
Index