Nuprl Lemma : presheaf-subset-true

[C:SmallCategory]. ∀[F:Presheaf(C)].  ext-equal-presheaves(C;F|True;F)


Proof




Definitions occuring in Statement :  presheaf-subset: F|I,rho.P[I; rho] ext-equal-presheaves: ext-equal-presheaves(C;F;G) presheaf: Presheaf(C) small-category: SmallCategory uall: [x:A]. B[x] true: True
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-equal-presheaves: ext-equal-presheaves(C;F;G) and: P ∧ Q all: x:A. B[x] presheaf-subset: F|I,rho.P[I; rho] mk-presheaf: mk-presheaf top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] ext-eq: A ≡ B subtype_rel: A ⊆B presheaf: Presheaf(C) uimplies: supposing a prop: true: True functor-arrow: arrow(F) pi2: snd(t) cat-arrow: cat-arrow(C) pi1: fst(t) type-cat: TypeCat
Lemmas referenced :  ob_mk_functor_lemma cat-ob_wf arrow_mk_functor_lemma cat-arrow_wf presheaf_wf small-category_wf functor-ob_wf op-cat_wf small-category-subtype type-cat_wf subtype_rel-equal cat_ob_op_lemma true_wf functor-arrow_wf op-cat-arrow subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality applyEquality because_Cache productElimination independent_pairEquality lambdaEquality axiomEquality setElimination rename setEquality instantiate independent_isectElimination dependent_set_memberEquality natural_numberEquality functionExtensionality functionEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:Presheaf(C)].    ext-equal-presheaves(C;F|True;F)



Date html generated: 2017_10_05-AM-00_51_06
Last ObjectModification: 2017_10_03-PM-03_22_30

Theory : small!categories


Home Index