Nuprl Lemma : trans-horizontal-comp_wf

[C,D,E:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[J,K:Functor(D;E)]. ∀[tFG:nat-trans(C;D;F;G)]. ∀[tJK:nat-trans(D;E;J;K)].
  (trans-horizontal-comp(E;F;G;J;K;tFG;tJK) ∈ nat-trans(C;E;functor-comp(F;J);functor-comp(G;K)))


Proof




Definitions occuring in Statement :  trans-horizontal-comp: trans-horizontal-comp(E;F;G;J;K;tFG;tJK) functor-comp: functor-comp(F;G) nat-trans: nat-trans(C;D;F;G) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T trans-horizontal-comp: trans-horizontal-comp(E;F;G;J;K;tFG;tJK) so_lambda: λ2x.t[x] nat-trans: nat-trans(C;D;F;G) subtype_rel: A ⊆B uimplies: supposing a functor-ob: ob(F) pi1: fst(t) functor-comp: functor-comp(F;G) mk-functor: mk-functor so_apply: x[s] all: x:A. B[x] top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  mk-nat-trans_wf functor-comp_wf cat-comp_wf functor-ob_wf functor-arrow_wf subtype_rel-equal cat-arrow_wf cat-ob_wf ob_mk_functor_lemma arrow_mk_functor_lemma nat-trans_wf cat-functor_wf small-category_wf equal_wf squash_wf true_wf nat-trans-equation nat-trans-assoc-equation cat-comp-assoc nat-trans-comp-equation2 iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis lambdaEquality applyEquality setElimination rename independent_isectElimination lambdaFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality imageElimination universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[C,D,E:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[J,K:Functor(D;E)].  \mforall{}[tFG:nat-trans(C;D;F;G)].
\mforall{}[tJK:nat-trans(D;E;J;K)].
    (trans-horizontal-comp(E;F;G;J;K;tFG;tJK)  \mmember{}  nat-trans(C;E;functor-comp(F;J);functor-comp(G;K)))



Date html generated: 2017_10_05-AM-00_48_00
Last ObjectModification: 2017_07_28-AM-09_19_54

Theory : small!categories


Home Index