Nuprl Lemma : trans-horizontal-comp_wf
∀[C,D,E:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[J,K:Functor(D;E)]. ∀[tFG:nat-trans(C;D;F;G)]. ∀[tJK:nat-trans(D;E;J;K)].
  (trans-horizontal-comp(E;F;G;J;K;tFG;tJK) ∈ nat-trans(C;E;functor-comp(F;J);functor-comp(G;K)))
Proof
Definitions occuring in Statement : 
trans-horizontal-comp: trans-horizontal-comp(E;F;G;J;K;tFG;tJK)
, 
functor-comp: functor-comp(F;G)
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
trans-horizontal-comp: trans-horizontal-comp(E;F;G;J;K;tFG;tJK)
, 
so_lambda: λ2x.t[x]
, 
nat-trans: nat-trans(C;D;F;G)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
functor-comp: functor-comp(F;G)
, 
mk-functor: mk-functor, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
mk-nat-trans_wf, 
functor-comp_wf, 
cat-comp_wf, 
functor-ob_wf, 
functor-arrow_wf, 
subtype_rel-equal, 
cat-arrow_wf, 
cat-ob_wf, 
ob_mk_functor_lemma, 
arrow_mk_functor_lemma, 
nat-trans_wf, 
cat-functor_wf, 
small-category_wf, 
equal_wf, 
squash_wf, 
true_wf, 
nat-trans-equation, 
nat-trans-assoc-equation, 
cat-comp-assoc, 
nat-trans-comp-equation2, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[C,D,E:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[J,K:Functor(D;E)].  \mforall{}[tFG:nat-trans(C;D;F;G)].
\mforall{}[tJK:nat-trans(D;E;J;K)].
    (trans-horizontal-comp(E;F;G;J;K;tFG;tJK)  \mmember{}  nat-trans(C;E;functor-comp(F;J);functor-comp(G;K)))
Date html generated:
2017_10_05-AM-00_48_00
Last ObjectModification:
2017_07_28-AM-09_19_54
Theory : small!categories
Home
Index