Nuprl Lemma : MTree_Node-labels_wf
∀[T:Type]. ∀[v:MultiTree(T)].  MTree_Node-labels(v) ∈ {L:Atom List| 0 < ||L||}  supposing ↑MTree_Node?(v)
Proof
Definitions occuring in Statement : 
MTree_Node-labels: MTree_Node-labels(v), 
MTree_Node?: MTree_Node?(v), 
MultiTree: MultiTree(T), 
length: ||as||, 
list: T List, 
assert: ↑b, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
natural_number: $n, 
atom: Atom, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
guard: {T}, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
MTree_Node?: MTree_Node?(v), 
pi1: fst(t), 
assert: ↑b, 
MTree_Node-labels: MTree_Node-labels(v), 
pi2: snd(t), 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
bnot: ¬bb, 
false: False
Lemmas referenced : 
MultiTree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
MTree_Node?_wf, 
MultiTree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
promote_hyp, 
productElimination, 
hypothesis_subsumption, 
hypothesis, 
applyEquality, 
sqequalRule, 
tokenEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
dependent_pairFormation, 
voidElimination, 
equalityEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[v:MultiTree(T)].    MTree\_Node-labels(v)  \mmember{}  \{L:Atom  List|  0  <  ||L||\}    supposing  \muparrow{}MTree\_Nod\000Ce?(v)
 Date html generated: 
2016_05_16-AM-08_53_09
 Last ObjectModification: 
2015_12_28-PM-06_54_01
Theory : C-semantics
Home
Index