Nuprl Lemma : ifthenelse_functionality_wrt_rev_implies2
∀b1,b2:𝔹.  ∀[p,q1,q2:ℙ].  (b1 = b2 
⇒ {q1 
⇐ q2} 
⇒ {if b1 then p else q1 fi  
⇐ if b2 then p else q2 fi })
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
member: t ∈ T
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
false: False
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
btrue_wf, 
assert_wf, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
assert_of_bnot, 
ifthenelse_wf, 
rev_implies_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
cut, 
hypothesisEquality, 
thin, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
independent_pairFormation, 
natural_numberEquality, 
because_Cache, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
equalityTransitivity, 
dependent_pairFormation, 
promote_hyp, 
voidElimination, 
universeEquality
Latex:
\mforall{}b1,b2:\mBbbB{}.
    \mforall{}[p,q1,q2:\mBbbP{}].    (b1  =  b2  {}\mRightarrow{}  \{q1  \mLeftarrow{}{}  q2\}  {}\mRightarrow{}  \{if  b1  then  p  else  q1  fi    \mLeftarrow{}{}  if  b2  then  p  else  q2  fi  \})
Date html generated:
2017_04_14-AM-07_30_10
Last ObjectModification:
2017_02_27-PM-02_58_42
Theory : bool_1
Home
Index