Nuprl Lemma : norm-fst_wf
∀[A:Type]. ∀[B:A ⟶ Type].  ∀[N:id-fun(A)]. (norm-fst(N) ∈ id-fun(a:A × B[a])) supposing value-type(A)
Proof
Definitions occuring in Statement : 
norm-fst: norm-fst(N)
, 
id-fun: id-fun(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
id-fun: id-fun(T)
, 
norm-fst: norm-fst(N)
, 
has-value: (a)↓
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
value-type-has-value, 
equal_wf, 
set-value-type, 
id-fun_wf, 
value-type_wf, 
subtype_rel-equal, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
functionExtensionality, 
productElimination, 
thin, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
isectElimination, 
setEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
applyEquality, 
dependent_set_memberEquality, 
dependent_pairEquality, 
because_Cache, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
universeEquality, 
setElimination, 
rename, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}[N:id-fun(A)].  (norm-fst(N)  \mmember{}  id-fun(a:A  \mtimes{}  B[a]))  supposing  value-type(A)
Date html generated:
2017_04_14-AM-07_22_06
Last ObjectModification:
2017_02_27-PM-02_55_23
Theory : call!by!value_2
Home
Index