Nuprl Lemma : norm-fst_wf

[A:Type]. ∀[B:A ⟶ Type].  ∀[N:id-fun(A)]. (norm-fst(N) ∈ id-fun(a:A × B[a])) supposing value-type(A)


Proof




Definitions occuring in Statement :  norm-fst: norm-fst(N) id-fun: id-fun(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a id-fun: id-fun(T) norm-fst: norm-fst(N) has-value: (a)↓ prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] implies:  Q
Lemmas referenced :  value-type-has-value equal_wf set-value-type id-fun_wf value-type_wf subtype_rel-equal set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution functionExtensionality productElimination thin sqequalRule callbyvalueReduce extract_by_obid isectElimination setEquality cumulativity hypothesisEquality hypothesis independent_isectElimination lambdaEquality applyEquality dependent_set_memberEquality dependent_pairEquality because_Cache productEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality universeEquality setElimination rename lambdaFormation dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}[N:id-fun(A)].  (norm-fst(N)  \mmember{}  id-fun(a:A  \mtimes{}  B[a]))  supposing  value-type(A)



Date html generated: 2017_04_14-AM-07_22_06
Last ObjectModification: 2017_02_27-PM-02_55_23

Theory : call!by!value_2


Home Index