Nuprl Lemma : copathAgree_transitivity

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].
  ∀x,y,z:copath(a.B[a];w).
    ((copath-length(x) ≤ copath-length(y))
     (copath-length(y) ≤ copath-length(z))
     copathAgree(a.B[a];w;x;y)
     copathAgree(a.B[a];w;y;z)
     copathAgree(a.B[a];w;x;z))


Proof




Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath-length: copath-length(p) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  copathAgree: copathAgree(a.B[a];w;x;y) copath-length: copath-length(p) copath: copath(a.B[a];w) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q pi1: fst(t) member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q less_than: a < b and: P ∧ Q less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: uiff: uiff(P;Q) uimplies: supposing a le: A ≤ B guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B gt: i > j sq_stable: SqStable(P)
Lemmas referenced :  decidable__lt top_wf less_than_wf not-lt less_than_transitivity1 less_than_irreflexivity coPathAgree_wf coPath_subtype le_weakening2 not-gt-2 le_wf nat_wf coPath_wf coW_wf coPathAgree_transitivity coPathAgree_le sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation productElimination thin sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination setElimination rename hypothesisEquality hypothesis unionElimination because_Cache lessCases isectElimination axiomSqEquality isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed imageElimination independent_functionElimination independent_isectElimination spreadEquality equalityTransitivity equalitySymmetry lambdaEquality applyEquality productEquality instantiate cumulativity functionEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].
    \mforall{}x,y,z:copath(a.B[a];w).
        ((copath-length(x)  \mleq{}  copath-length(y))
        {}\mRightarrow{}  (copath-length(y)  \mleq{}  copath-length(z))
        {}\mRightarrow{}  copathAgree(a.B[a];w;x;y)
        {}\mRightarrow{}  copathAgree(a.B[a];w;y;z)
        {}\mRightarrow{}  copathAgree(a.B[a];w;x;z))



Date html generated: 2019_06_20-PM-00_56_51
Last ObjectModification: 2019_01_02-PM-01_33_54

Theory : co-recursion-2


Home Index