Nuprl Lemma : coPathAgree_transitivity

āˆ€[A:š•Œ']. āˆ€[B:A āŸ¶ Type].
  āˆ€n:ā„•
    āˆ€[w:coW(A;a.B[a])]
      āˆ€p,q,r:coPath(a.B[a];w;n).
        (coPathAgree(a.B[a];n;w;p;q) ā‡’ coPathAgree(a.B[a];n;w;q;r) ā‡’ coPathAgree(a.B[a];n;w;p;r))


Proof




Definitions occuring in Statement :  coPathAgree: coPathAgree(a.B[a];n;w;p;q) coPath: coPath(a.B[a];w;n) coW: coW(A;a.B[a]) nat: ā„• uall: āˆ€[x:A]. B[x] so_apply: x[s] all: āˆ€x:A. B[x] implies: ā‡’ Q function: x:A āŸ¶ B[x] universe: Type
Definitions unfolded in proof :  uall: āˆ€[x:A]. B[x] all: āˆ€x:A. B[x] coPathAgree: coPathAgree(a.B[a];n;w;p;q) coPath: coPath(a.B[a];w;n) eq_int: (i =z j) member: t āˆˆ T implies: ā‡’ Q bool: š”¹ unit: Unit it: ā‹… btrue: tt uiff: uiff(P;Q) and: P āˆ§ Q uimplies: supposing a ifthenelse: if then else fi  true: True prop: ā„™ so_lambda: Ī»2x.t[x] so_apply: x[s] bfalse: ff exists: āˆƒx:A. B[x] or: P āˆØ Q sq_type: SQType(T) guard: {T} bnot: Ā¬bb assert: ā†‘b false: False subtract: m nequal: a ā‰  b āˆˆ  not: Ā¬A subtype_rel: A āŠ†B nat: ā„• decidable: Dec(P) iff: ā‡ā‡’ Q rev_implies: ā‡ Q top: Top le: A ā‰¤ B less_than': less_than'(a;b) cand: cāˆ§ B squash: ā†“T
Lemmas referenced :  btrue_wf bool_wf eqtt_to_assert assert_of_eq_int true_wf top_wf coW_wf eqff_to_assert eq_int_wf equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int coW-dom_wf coPathAgree_wf coW-item_wf coPath_wf uall_wf all_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf set_wf less_than_wf primrec-wf2 nat_wf subtype_rel-equal not-equal-2 and_wf squash_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin sqequalRule introduction extract_by_obid hypothesis sqequalHypSubstitution unionElimination equalityElimination isectElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination natural_numberEquality because_Cache lambdaEquality dependent_functionElimination hypothesisEquality axiomEquality instantiate cumulativity applyEquality dependent_pairFormation promote_hyp independent_functionElimination voidElimination productEquality functionExtensionality rename setElimination universeEquality dependent_set_memberEquality independent_pairFormation addEquality isect_memberEquality voidEquality intEquality minusEquality functionEquality imageElimination applyLambdaEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}n:\mBbbN{}
        \mforall{}[w:coW(A;a.B[a])]
            \mforall{}p,q,r:coPath(a.B[a];w;n).
                (coPathAgree(a.B[a];n;w;p;q)  {}\mRightarrow{}  coPathAgree(a.B[a];n;w;q;r)  {}\mRightarrow{}  coPathAgree(a.B[a];n;w;p;r))



Date html generated: 2018_07_25-PM-01_38_24
Last ObjectModification: 2018_06_04-PM-09_44_49

Theory : co-recursion


Home Index