Nuprl Lemma : coPathAgree_le

[A:𝕌']. ∀[B:A ⟶ Type].
  ∀n:ℕ
    ∀[w:coW(A;a.B[a])]
      ∀p,q:coPath(a.B[a];w;n).  (coPathAgree(a.B[a];n;w;p;q)  (∀m:ℕ((m ≤ n)  coPathAgree(a.B[a];m;w;p;q))))


Proof




Definitions occuring in Statement :  coPathAgree: coPathAgree(a.B[a];n;w;p;q) coPath: coPath(a.B[a];w;n) coW: coW(A;a.B[a]) nat: uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True coPathAgree: coPathAgree(a.B[a];n;w;p;q) eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  sq_stable: SqStable(P) squash: T coPath: coPath(a.B[a];w;n) cand: c∧ B
Lemmas referenced :  uall_wf coW_wf all_wf coPath_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf coPathAgree_wf nat_wf coPath_subtype set_wf less_than_wf primrec-wf2 eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not-equal-2 sq_stable__le minus-zero true_wf less_than_transitivity1 le_weakening less_than_irreflexivity top_wf coW-item_wf subtype_rel-equal and_wf coW-dom_wf le-add-cancel-alt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin rename setElimination instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality because_Cache hypothesis universeEquality dependent_set_memberEquality natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination addEquality isect_memberEquality voidEquality intEquality minusEquality functionEquality equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp imageMemberEquality baseClosed imageElimination applyLambdaEquality productEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}n:\mBbbN{}
        \mforall{}[w:coW(A;a.B[a])]
            \mforall{}p,q:coPath(a.B[a];w;n).
                (coPathAgree(a.B[a];n;w;p;q)  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  ((m  \mleq{}  n)  {}\mRightarrow{}  coPathAgree(a.B[a];m;w;p;q))))



Date html generated: 2018_07_25-PM-01_38_19
Last ObjectModification: 2018_06_04-PM-10_02_41

Theory : co-recursion


Home Index