Nuprl Lemma : vdf-eq_wf1

[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[L:(a:A × b:B × C[a;b]) List]. ∀[m:ℤ]. ∀[f:vdf(A;B;a,b.C[a;b];m 1)].
  vdf-eq(A;f;L) ∈ Type supposing ||L|| ≤ m


Proof




Definitions occuring in Statement :  vdf: vdf(A;B;a,b.C[a; b];n) vdf-eq: vdf-eq(A;f;L) length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] le: A ≤ B member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] subtract: m natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q nat: less_than: a < b squash: T and: P ∧ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: le: A ≤ B vdf-eq: vdf-eq(A;f;L) dep-all: dep-all(n;i.P[i]) less_than': less_than'(a;b) true: True
Lemmas referenced :  vdf-wf istype-le length_wf vdf_wf subtract_wf istype-int list_wf istype-universe decidable__lt decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtract-add-cancel istype-top true_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productEquality applyEquality universeIsType sqequalRule lambdaEquality_alt natural_numberEquality functionIsType inhabitedIsType instantiate universeEquality dependent_functionElimination unionElimination dependent_set_memberEquality_alt imageElimination productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination because_Cache lessCases axiomSqEquality isect_memberEquality_alt isectIsTypeImplies imageMemberEquality baseClosed lambdaFormation_alt

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List].  \mforall{}[m:\mBbbZ{}].
\mforall{}[f:vdf(A;B;a,b.C[a;b];m  -  1)].
    vdf-eq(A;f;L)  \mmember{}  Type  supposing  ||L||  \mleq{}  m



Date html generated: 2020_05_19-PM-09_40_27
Last ObjectModification: 2020_03_05-PM-01_01_37

Theory : co-recursion-2


Home Index