Nuprl Lemma : vdf-eq_wf1
∀[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[L:(a:A × b:B × C[a;b]) List]. ∀[m:ℤ]. ∀[f:vdf(A;B;a,b.C[a;b];m - 1)].
  vdf-eq(A;f;L) ∈ Type supposing ||L|| ≤ m
Proof
Definitions occuring in Statement : 
vdf: vdf(A;B;a,b.C[a; b];n)
, 
vdf-eq: vdf-eq(A;f;L)
, 
length: ||as||
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
le: A ≤ B
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
le: A ≤ B
, 
vdf-eq: vdf-eq(A;f;L)
, 
dep-all: dep-all(n;i.P[i])
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
vdf-wf, 
istype-le, 
length_wf, 
vdf_wf, 
subtract_wf, 
istype-int, 
list_wf, 
istype-universe, 
decidable__lt, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
subtract-add-cancel, 
istype-top, 
true_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productEquality, 
applyEquality, 
universeIsType, 
sqequalRule, 
lambdaEquality_alt, 
natural_numberEquality, 
functionIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_set_memberEquality_alt, 
imageElimination, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
because_Cache, 
lessCases, 
axiomSqEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
lambdaFormation_alt
Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List].  \mforall{}[m:\mBbbZ{}].
\mforall{}[f:vdf(A;B;a,b.C[a;b];m  -  1)].
    vdf-eq(A;f;L)  \mmember{}  Type  supposing  ||L||  \mleq{}  m
Date html generated:
2020_05_19-PM-09_40_27
Last ObjectModification:
2020_03_05-PM-01_01_37
Theory : co-recursion-2
Home
Index