Nuprl Lemma : axiom-choice-0X-quot

B:{B:Type| B ⊆Base} . ∀X:Type. ∀P:B ⟶ X ⟶ ℙ.  ((∀n:B. ⇃(∃m:X. (P m)))  ⇃(∃f:B ⟶ X. ∀n:B. (P (f n))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] subtype_rel: A ⊆B prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] sq_stable: SqStable(P) squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_wf subtype_rel_set equiv_rel_true true_wf exists_wf quotient_wf all_wf base_wf sq_stable__subtype_rel canonicalizable-base canonicalizable_wf trivial-quotient-true axiom-choice-quot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality independent_functionElimination isectElimination hypothesis introduction sqequalRule imageMemberEquality baseClosed imageElimination lambdaEquality cumulativity applyEquality because_Cache independent_isectElimination functionEquality instantiate universeEquality setEquality

Latex:
\mforall{}B:\{B:Type|  B  \msubseteq{}r  Base\}  .  \mforall{}X:Type.  \mforall{}P:B  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}n:B.  \00D9(\mexists{}m:X.  (P  n  m)))  {}\mRightarrow{}  \00D9(\mexists{}f:B  {}\mrightarrow{}  X.  \mforall{}n:B.  (P  n  (f  n))))



Date html generated: 2016_05_14-PM-09_42_30
Last ObjectModification: 2016_01_15-PM-10_55_33

Theory : continuity


Home Index