Nuprl Lemma : pseudo-bounded-not-unbounded

[S:{S:Type| S ⊆r ℕ]. (pseudo-bounded(S)  (∀B:ℕ. ∃n:{B...}. (n ∈ S))))


Proof




Definitions occuring in Statement :  pseudo-bounded: pseudo-bounded(S) int_upper: {i...} nat: subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q member: t ∈ T set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T all: x:A. B[x] subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a not: ¬A false: False exists: x:A. B[x] int_upper: {i...} prop: pi1: fst(t) pseudo-bounded: pseudo-bounded(S) guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top le: A ≤ B and: P ∧ Q
Lemmas referenced :  sq_stable__subtype_rel nat_wf set_subtype_base le_wf istype-int int_subtype_base equal-wf-base istype-universe int_upper_wf pseudo-bounded_wf subtype_rel_wf subtype_rel_self exists_wf nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf le_weakening2 decidable__lt subtype_rel_transitivity int_upper_properties intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination Error :lambdaFormation_alt,  baseApply closedConclusion applyEquality intEquality Error :lambdaEquality_alt,  natural_numberEquality independent_isectElimination because_Cache equalityTransitivity equalitySymmetry Error :universeIsType,  promote_hyp productElimination Error :functionIsType,  Error :productIsType,  Error :equalityIsType4,  voidElimination Error :setIsType,  universeEquality Error :dependent_pairFormation_alt,  functionExtensionality Error :inhabitedIsType,  Error :equalityIsType1,  dependent_functionElimination Error :dependent_set_memberEquality_alt,  unionElimination approximateComputation int_eqEquality Error :isect_memberEquality_alt,  applyLambdaEquality independent_pairFormation

Latex:
\mforall{}[S:\{S:Type|  S  \msubseteq{}r  \mBbbN{}\}  ].  (pseudo-bounded(S)  {}\mRightarrow{}  (\mneg{}(\mforall{}B:\mBbbN{}.  \mexists{}n:\{B...\}.  (n  \mmember{}  S))))



Date html generated: 2019_06_20-PM-02_51_57
Last ObjectModification: 2018_10_05-PM-11_12_49

Theory : continuity


Home Index