Nuprl Lemma : pseudo-bounded-not-unbounded
∀[S:{S:Type| S ⊆r ℕ} ]. (pseudo-bounded(S) 
⇒ (¬(∀B:ℕ. ∃n:{B...}. (n ∈ S))))
Proof
Definitions occuring in Statement : 
pseudo-bounded: pseudo-bounded(S)
, 
int_upper: {i...}
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
int_upper: {i...}
, 
prop: ℙ
, 
pi1: fst(t)
, 
pseudo-bounded: pseudo-bounded(S)
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
le: A ≤ B
, 
and: P ∧ Q
Lemmas referenced : 
sq_stable__subtype_rel, 
nat_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
equal-wf-base, 
istype-universe, 
int_upper_wf, 
pseudo-bounded_wf, 
subtype_rel_wf, 
subtype_rel_self, 
exists_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_weakening2, 
decidable__lt, 
subtype_rel_transitivity, 
int_upper_properties, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
Error :lambdaFormation_alt, 
baseApply, 
closedConclusion, 
applyEquality, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
promote_hyp, 
productElimination, 
Error :functionIsType, 
Error :productIsType, 
Error :equalityIsType4, 
voidElimination, 
Error :setIsType, 
universeEquality, 
Error :dependent_pairFormation_alt, 
functionExtensionality, 
Error :inhabitedIsType, 
Error :equalityIsType1, 
dependent_functionElimination, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
applyLambdaEquality, 
independent_pairFormation
Latex:
\mforall{}[S:\{S:Type|  S  \msubseteq{}r  \mBbbN{}\}  ].  (pseudo-bounded(S)  {}\mRightarrow{}  (\mneg{}(\mforall{}B:\mBbbN{}.  \mexists{}n:\{B...\}.  (n  \mmember{}  S))))
Date html generated:
2019_06_20-PM-02_51_57
Last ObjectModification:
2018_10_05-PM-11_12_49
Theory : continuity
Home
Index