Nuprl Lemma : squashed-continuity1-rel_wf
∀[A:(ℕ ⟶ ℕ) ⟶ (ℕ ⟶ ℕ) ⟶ ℙ]. (squashed-continuity1-rel(A) ∈ ℙ)
Proof
Definitions occuring in Statement : 
squashed-continuity1-rel: squashed-continuity1-rel(A)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
squashed-continuity1-rel: squashed-continuity1-rel(A)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
shift-seq_wf, 
subtype_rel_self, 
false_wf, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
int_seg_wf, 
equal_wf, 
equiv_rel_true, 
true_wf, 
exists_wf, 
quotient_wf, 
nat_wf, 
all_wf
Rules used in proof : 
universeEquality, 
cumulativity, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
lambdaFormation, 
independent_pairFormation, 
rename, 
setElimination, 
natural_numberEquality, 
productEquality, 
independent_isectElimination, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
because_Cache, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}].  (squashed-continuity1-rel(A)  \mmember{}  \mBbbP{})
Date html generated:
2017_04_20-AM-07_35_46
Last ObjectModification:
2017_04_07-PM-05_57_14
Theory : continuity
Home
Index