Nuprl Lemma : squashed-continuity1-rel_wf

[A:(ℕ ⟶ ℕ) ⟶ (ℕ ⟶ ℕ) ⟶ ℙ]. (squashed-continuity1-rel(A) ∈ ℙ)


Proof




Definitions occuring in Statement :  squashed-continuity1-rel: squashed-continuity1-rel(A) nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B nat: implies:  Q and: P ∧ Q all: x:A. B[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] prop: squashed-continuity1-rel: squashed-continuity1-rel(A) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  shift-seq_wf subtype_rel_self false_wf int_seg_subtype_nat subtype_rel_dep_function int_seg_wf equal_wf equiv_rel_true true_wf exists_wf quotient_wf nat_wf all_wf
Rules used in proof :  universeEquality cumulativity equalitySymmetry equalityTransitivity axiomEquality lambdaFormation independent_pairFormation rename setElimination natural_numberEquality productEquality independent_isectElimination hypothesisEquality functionExtensionality applyEquality lambdaEquality because_Cache hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid functionEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}].  (squashed-continuity1-rel(A)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_20-AM-07_35_46
Last ObjectModification: 2017_04_07-PM-05_57_14

Theory : continuity


Home Index