Nuprl Lemma : strong-continuity-implies1-sp

[F:(ℕ ⟶ ℕ) ⟶ ℕ]. (↓∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?). ∀f:ℕ ⟶ ℕ(↓∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] nat: uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q
Lemmas referenced :  subtype_rel_self false_wf int_seg_subtype_nat int_seg_wf subtype_rel_dep_function unit_wf2 equal_wf exists_wf squash_wf all_wf strong-continuity-implies1 nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed functionEquality lemma_by_obid isectElimination productElimination dependent_pairFormation lambdaFormation dependent_functionElimination because_Cache lambdaEquality unionEquality applyEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation inlEquality

Latex:
\mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}].  (\mdownarrow{}\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?).  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f)))))



Date html generated: 2016_05_14-PM-09_41_51
Last ObjectModification: 2016_01_15-PM-10_55_49

Theory : continuity


Home Index