Nuprl Lemma : weak-continuity-skolem_functionality

[T,S:Type].
  ∀e:T S. ∀F:(ℕ ⟶ S) ⟶ ℕ.  (weak-continuity-skolem(T;λf.(F ((fst(e)) f)))  weak-continuity-skolem(S;F))


Proof




Definitions occuring in Statement :  weak-continuity-skolem: weak-continuity-skolem(T;F) equipollent: B compose: g nat: uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] equipollent: B exists: x:A. B[x] pi1: fst(t) implies:  Q member: t ∈ T and: P ∧ Q weak-continuity-skolem: weak-continuity-skolem(T;F) prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A compose: g nat: squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  biject-inverse weak-continuity-skolem_wf nat_wf compose_wf equipollent_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf all_wf and_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid isectElimination hypothesisEquality independent_functionElimination hypothesis rename cumulativity lambdaEquality applyEquality functionExtensionality functionEquality universeEquality dependent_pairFormation natural_numberEquality because_Cache independent_isectElimination independent_pairFormation dependent_functionElimination equalitySymmetry dependent_set_memberEquality equalityTransitivity setElimination applyLambdaEquality hyp_replacement imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[T,S:Type].
    \mforall{}e:T  \msim{}  S.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  S)  {}\mrightarrow{}  \mBbbN{}.
        (weak-continuity-skolem(T;\mlambda{}f.(F  ((fst(e))  o  f)))  {}\mRightarrow{}  weak-continuity-skolem(S;F))



Date html generated: 2017_04_17-AM-09_54_00
Last ObjectModification: 2017_02_27-PM-05_49_00

Theory : continuity


Home Index