Nuprl Lemma : weak-continuity-skolem_functionality
∀[T,S:Type].
  ∀e:T ~ S. ∀F:(ℕ ⟶ S) ⟶ ℕ.  (weak-continuity-skolem(T;λf.(F ((fst(e)) o f))) 
⇒ weak-continuity-skolem(S;F))
Proof
Definitions occuring in Statement : 
weak-continuity-skolem: weak-continuity-skolem(T;F)
, 
equipollent: A ~ B
, 
compose: f o g
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
pi1: fst(t)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
weak-continuity-skolem: weak-continuity-skolem(T;F)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
compose: f o g
, 
nat: ℕ
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
biject-inverse, 
weak-continuity-skolem_wf, 
nat_wf, 
compose_wf, 
equipollent_wf, 
equal_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
all_wf, 
and_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
cumulativity, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
universeEquality, 
dependent_pairFormation, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
dependent_functionElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
equalityTransitivity, 
setElimination, 
applyLambdaEquality, 
hyp_replacement, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T,S:Type].
    \mforall{}e:T  \msim{}  S.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  S)  {}\mrightarrow{}  \mBbbN{}.
        (weak-continuity-skolem(T;\mlambda{}f.(F  ((fst(e))  o  f)))  {}\mRightarrow{}  weak-continuity-skolem(S;F))
Date html generated:
2017_04_17-AM-09_54_00
Last ObjectModification:
2017_02_27-PM-05_49_00
Theory : continuity
Home
Index