Nuprl Lemma : name_eq-normalize-name2
∀[X,F,G:Top]. ∀[a,b:Name].  (if name_eq(a;b) ∧b X then F a else G fi  ~ if name_eq(a;b) ∧b X then F b else G fi )
Proof
Definitions occuring in Statement : 
name_eq: name_eq(x;y)
, 
name: Name
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
name: Name
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
Lemmas referenced : 
name_eq_wf, 
bool_wf, 
eqtt_to_assert, 
assert-name_eq, 
subtype_base_sq, 
name_wf, 
list_subtype_base, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
top_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
because_Cache, 
voidElimination, 
isect_memberFormation, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[X,F,G:Top].  \mforall{}[a,b:Name].
    (if  name\_eq(a;b)  \mwedge{}\msubb{}  X  then  F  a  else  G  fi    \msim{}  if  name\_eq(a;b)  \mwedge{}\msubb{}  X  then  F  b  else  G  fi  )
Date html generated:
2017_04_17-AM-09_17_28
Last ObjectModification:
2017_02_27-PM-05_21_44
Theory : decidable!equality
Home
Index