Nuprl Lemma : mk_deq-subtype

[T,S:Type].  ∀[p:∀x,y:S.  Dec(x y ∈ S)]. (mk_deq(p) ∈ EqDecider(T)) supposing strong-subtype(T;S)


Proof




Definitions occuring in Statement :  mk_deq: mk_deq(p) deq: EqDecider(T) strong-subtype: strong-subtype(A;B) decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q guard: {T} subtype_rel: A ⊆B deq: EqDecider(T) so_lambda: λ2x.t[x] so_apply: x[s] strong-subtype: strong-subtype(A;B) cand: c∧ B all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q prop: rev_implies:  Q
Lemmas referenced :  strong-subtype-implies mk_deq_wf subtype_rel_sets bool_wf all_wf iff_wf equal_wf assert_wf subtype_rel_set subtype_rel_dep_function subtype_rel_self decidable_wf strong-subtype_wf equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis applyEquality functionEquality sqequalRule lambdaEquality independent_isectElimination because_Cache productElimination lambdaFormation independent_pairFormation universeEquality equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mforall{}[T,S:Type].    \mforall{}[p:\mforall{}x,y:S.    Dec(x  =  y)].  (mk\_deq(p)  \mmember{}  EqDecider(T))  supposing  strong-subtype(T;S)



Date html generated: 2016_05_14-AM-06_06_34
Last ObjectModification: 2015_12_26-AM-11_46_51

Theory : equality!deciders


Home Index