Nuprl Lemma : decidable__all_finite

[T:Type]. ∀k:ℕ(T ~ ℕ (∀[P:T ⟶ ℙ]. ((∀x:T. Dec(P[x]))  Dec(∀x:T. P[x]))))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q true: True inject: Inj(A;B;f) pi1: fst(t) guard: {T} squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k uimplies: supposing a int_seg: {i..j-} false: False prop: subtype_rel: A ⊆B not: ¬A or: P ∨ Q decidable: Dec(P) so_apply: x[s] so_lambda: λ2x.t[x] nat: member: t ∈ T surject: Surj(A;B;f) and: P ∧ Q biject: Bij(A;B;f) exists: x:A. B[x] equipollent: B implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  iff_weakening_equal true_wf squash_wf equal_wf int_subtype_base istype-int lelt_wf set_subtype_base istype-universe istype-nat equipollent_wf decidable_wf istype-void subtype_rel_self int_seg_wf decidable__all_int_seg
Rules used in proof :  baseClosed imageMemberEquality hyp_replacement equalityTransitivity Error :inhabitedIsType,  functionExtensionality Error :dependent_pairFormation_alt,  equalitySymmetry sqequalBase imageElimination independent_isectElimination intEquality Error :equalityIstype,  universeEquality voidElimination Error :inrFormation_alt,  Error :functionIsType,  Error :inlFormation_alt,  unionElimination independent_functionElimination Error :universeIsType,  hypothesisEquality applyEquality Error :lambdaEquality_alt,  sqequalRule isectElimination because_Cache rename setElimination natural_numberEquality dependent_functionElimination extract_by_obid introduction instantiate promote_hyp hypothesis cut thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}k:\mBbbN{}.  (T  \msim{}  \mBbbN{}k  {}\mRightarrow{}  (\mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  Dec(\mforall{}x:T.  P[x]))))



Date html generated: 2019_06_20-PM-02_19_30
Last ObjectModification: 2019_06_06-PM-00_16_34

Theory : equipollence!!cardinality!


Home Index