Nuprl Lemma : decidable__all_finite
∀[T:Type]. ∀k:ℕ. (T ~ ℕk 
⇒ (∀[P:T ⟶ ℙ]. ((∀x:T. Dec(P[x])) 
⇒ Dec(∀x:T. P[x]))))
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
inject: Inj(A;B;f)
, 
pi1: fst(t)
, 
guard: {T}
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
member: t ∈ T
, 
surject: Surj(A;B;f)
, 
and: P ∧ Q
, 
biject: Bij(A;B;f)
, 
exists: ∃x:A. B[x]
, 
equipollent: A ~ B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
iff_weakening_equal, 
true_wf, 
squash_wf, 
equal_wf, 
int_subtype_base, 
istype-int, 
lelt_wf, 
set_subtype_base, 
istype-universe, 
istype-nat, 
equipollent_wf, 
decidable_wf, 
istype-void, 
subtype_rel_self, 
int_seg_wf, 
decidable__all_int_seg
Rules used in proof : 
baseClosed, 
imageMemberEquality, 
hyp_replacement, 
equalityTransitivity, 
Error :inhabitedIsType, 
functionExtensionality, 
Error :dependent_pairFormation_alt, 
equalitySymmetry, 
sqequalBase, 
imageElimination, 
independent_isectElimination, 
intEquality, 
Error :equalityIstype, 
universeEquality, 
voidElimination, 
Error :inrFormation_alt, 
Error :functionIsType, 
Error :inlFormation_alt, 
unionElimination, 
independent_functionElimination, 
Error :universeIsType, 
hypothesisEquality, 
applyEquality, 
Error :lambdaEquality_alt, 
sqequalRule, 
isectElimination, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
instantiate, 
promote_hyp, 
hypothesis, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}k:\mBbbN{}.  (T  \msim{}  \mBbbN{}k  {}\mRightarrow{}  (\mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  Dec(\mforall{}x:T.  P[x]))))
Date html generated:
2019_06_20-PM-02_19_30
Last ObjectModification:
2019_06_06-PM-00_16_34
Theory : equipollence!!cardinality!
Home
Index