Nuprl Lemma : not-all-finite

[T:Type]. ∀[P:T ⟶ ℙ].  ((∀x:T. Dec(P[x]))  (∃k:ℕ~ ℕk)  (∀x:T. P[x]) ⇐⇒ ∃x:T. P[x])))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  true: True inject: Inj(A;B;f) pi1: fst(t) squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k uimplies: supposing a int_seg: {i..j-} or: P ∨ Q decidable: Dec(P) so_lambda: λ2x.t[x] surject: Surj(A;B;f) biject: Bij(A;B;f) equipollent: B guard: {T} nat: rev_implies:  Q false: False prop: subtype_rel: A ⊆B so_apply: x[s] member: t ∈ T all: x:A. B[x] not: ¬A exists: x:A. B[x] and: P ∧ Q iff: ⇐⇒ Q implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  iff_weakening_equal true_wf squash_wf equal_wf int_subtype_base istype-int lelt_wf set_subtype_base not-all-int_seg decidable__all_int_seg istype-universe decidable_wf int_seg_wf equipollent_wf istype-nat istype-void subtype_rel_self
Rules used in proof :  baseClosed imageMemberEquality hyp_replacement equalityTransitivity Error :inhabitedIsType,  functionExtensionality Error :dependent_pairFormation_alt,  equalitySymmetry sqequalBase imageElimination independent_isectElimination intEquality Error :equalityIstype,  unionElimination Error :lambdaEquality_alt,  promote_hyp dependent_functionElimination rename setElimination natural_numberEquality Error :productIsType,  because_Cache voidElimination independent_functionElimination universeEquality isectElimination extract_by_obid introduction instantiate hypothesis applyEquality cut hypothesisEquality Error :universeIsType,  Error :functionIsType,  sqequalRule thin productElimination sqequalHypSubstitution independent_pairFormation Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k)  {}\mRightarrow{}  (\mneg{}(\mforall{}x:T.  P[x])  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:T.  (\mneg{}P[x])))



Date html generated: 2019_06_20-PM-02_19_39
Last ObjectModification: 2019_06_06-PM-00_37_22

Theory : equipollence!!cardinality!


Home Index