Nuprl Lemma : void-function-equipollent
∀F:Top. i:ℕ0 ⟶ F[i] ~ Top
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
lelt_wf, 
subtype_rel-equal, 
biject_wf, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
int_seg_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
hypothesis, 
dependent_pairFormation, 
functionExtensionality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
applyEquality, 
setEquality
Latex:
\mforall{}F:Top.  i:\mBbbN{}0  {}\mrightarrow{}  F[i]  \msim{}  Top
Date html generated:
2016_05_14-PM-04_05_38
Last ObjectModification:
2016_01_14-PM-11_06_07
Theory : equipollence!!cardinality!
Home
Index