Nuprl Lemma : void-function-equipollent

F:Top. i:ℕ0 ⟶ F[i] Top


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} top: Top so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T equipollent: B exists: x:A. B[x] top: Top uall: [x:A]. B[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A prop: biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) subtype_rel: A ⊆B
Lemmas referenced :  lelt_wf subtype_rel-equal biject_wf equal_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties int_seg_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid hypothesis dependent_pairFormation functionExtensionality isect_memberEquality voidElimination voidEquality functionEquality thin instantiate sqequalHypSubstitution isectElimination natural_numberEquality because_Cache hypothesisEquality setElimination rename productElimination independent_isectElimination lambdaEquality int_eqEquality intEquality dependent_functionElimination sqequalRule independent_pairFormation computeAll applyEquality setEquality

Latex:
\mforall{}F:Top.  i:\mBbbN{}0  {}\mrightarrow{}  F[i]  \msim{}  Top



Date html generated: 2016_05_14-PM-04_05_38
Last ObjectModification: 2016_01_14-PM-11_06_07

Theory : equipollence!!cardinality!


Home Index