Nuprl Lemma : eff-unique_wf
∀A:(𝔹 List) ⟶ ℙ. (eff-unique(A) ∈ ℙ)
Proof
Definitions occuring in Statement : 
eff-unique: eff-unique(A), 
list: T List, 
bool: 𝔹, 
prop: ℙ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
eff-unique: eff-unique(A), 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
and: P ∧ Q, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
exists: ∃x:A. B[x]
Lemmas referenced : 
all_wf, 
nat_wf, 
bool_wf, 
not_wf, 
equal_wf, 
exists_wf, 
map_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
upto_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
productEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
universeEquality, 
cumulativity
Latex:
\mforall{}A:(\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}.  (eff-unique(A)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-04_12_36
Last ObjectModification:
2015_12_26-PM-07_54_06
Theory : fan-theorem
Home
Index