Nuprl Lemma : empty-fset-closed

[T:Type]. ∀[eq:EqDecider(T)]. ∀[fs:(T ⟶ T) List].  ({} closed under fs)


Proof




Definitions occuring in Statement :  fset-closed: (s closed under fs) empty-fset: {} list: List deq: EqDecider(T) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fset-closed: (s closed under fs) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q false: False l_all: (∀x∈L.P[x])
Lemmas referenced :  mem_empty_lemma l_all_iff all_wf isect_wf false_wf l_member_wf int_seg_wf length_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction isectElimination functionEquality hypothesisEquality lambdaEquality setEquality productElimination independent_functionElimination lambdaFormation because_Cache equalityTransitivity equalitySymmetry natural_numberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[fs:(T  {}\mrightarrow{}  T)  List].    (\{\}  closed  under  fs)



Date html generated: 2016_05_14-PM-03_44_45
Last ObjectModification: 2015_12_26-PM-06_38_09

Theory : finite!sets


Home Index