Nuprl Lemma : f-subset-empty
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:fset(T)].  (x ⊆ {} ⇐⇒ x = {} ∈ fset(T))
Proof
Definitions occuring in Statement : 
empty-fset: {}, 
f-subset: xs ⊆ ys, 
fset: fset(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
f-subset: xs ⊆ ys, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
guard: {T}, 
top: Top, 
false: False
Lemmas referenced : 
f-subset_wf, 
empty-fset_wf, 
equal-wf-T-base, 
fset_wf, 
fset-member_witness, 
fset-member_wf, 
deq_wf, 
fset-extensionality, 
mem_empty_lemma, 
f-subset_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
baseClosed, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
universeEquality, 
independent_isectElimination, 
voidElimination, 
voidEquality, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:fset(T)].    (x  \msubseteq{}  \{\}  \mLeftarrow{}{}\mRightarrow{}  x  =  \{\})
Date html generated:
2016_10_21-AM-10_44_21
Last ObjectModification:
2016_07_12-AM-05_51_25
Theory : finite!sets
Home
Index