Nuprl Lemma : f-subset-empty

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:fset(T)].  (x ⊆ {} ⇐⇒ {} ∈ fset(T))


Proof




Definitions occuring in Statement :  empty-fset: {} f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q f-subset: xs ⊆ ys all: x:A. B[x] uimplies: supposing a uiff: uiff(P;Q) guard: {T} top: Top false: False
Lemmas referenced :  f-subset_wf empty-fset_wf equal-wf-T-base fset_wf fset-member_witness fset-member_wf deq_wf fset-extensionality mem_empty_lemma f-subset_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality baseClosed sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_functionElimination because_Cache universeEquality independent_isectElimination voidElimination voidEquality hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:fset(T)].    (x  \msubseteq{}  \{\}  \mLeftarrow{}{}\mRightarrow{}  x  =  \{\})



Date html generated: 2016_10_21-AM-10_44_21
Last ObjectModification: 2016_07_12-AM-05_51_25

Theory : finite!sets


Home Index