Nuprl Lemma : fset-some-iff2

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  uiff(fset-some(s;x.P[x]);¬(∀x:T. (x ∈  (¬↑P[x]))))


Proof




Definitions occuring in Statement :  fset-some: fset-some(s;x.P[x]) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] fset-some: fset-some(s;x.P[x]) exists: x:A. B[x]
Lemmas referenced :  fset-some-iff all_wf fset-member_wf not_wf assert_wf fset-some_wf exists_wf and_wf fset-null_wf fset-filter_wf fset_wf bool_wf deq_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation productElimination introduction independent_isectElimination lambdaFormation independent_functionElimination voidElimination sqequalRule lambdaEquality functionEquality applyEquality dependent_functionElimination universeEquality dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    uiff(fset-some(s;x.P[x]);\mneg{}(\mforall{}x:T.  (x  \mmember{}  s  {}\mRightarrow{}  (\mneg{}\muparrow{}P[x]))))



Date html generated: 2016_05_14-PM-03_41_07
Last ObjectModification: 2015_12_26-PM-06_40_34

Theory : finite!sets


Home Index