Nuprl Lemma : fset-some-iff

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  uiff(fset-some(s;x.P[x]);¬¬(∃x:T. (x ∈ s ∧ (↑P[x]))))


Proof




Definitions occuring in Statement :  fset-some: fset-some(s;x.P[x]) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] not: ¬A and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fset-some: fset-some(s;x.P[x]) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) prop: exists: x:A. B[x] guard: {T} all: x:A. B[x] top: Top cand: c∧ B
Lemmas referenced :  assert-fset-null fset-filter_wf not_wf exists_wf fset-member_wf assert_wf fset-null_wf fset_wf bool_wf deq_wf fset-extensionality empty-fset_wf fset-member_witness member-fset-filter mem_empty_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin sqequalHypSubstitution independent_functionElimination extract_by_obid isectElimination hypothesisEquality cumulativity lambdaEquality applyEquality functionExtensionality hypothesis productElimination independent_isectElimination voidElimination because_Cache productEquality dependent_functionElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality universeEquality dependent_pairFormation voidEquality hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    uiff(fset-some(s;x.P[x]);\mneg{}\mneg{}(\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  (\muparrow{}P[x]))))



Date html generated: 2016_10_21-AM-10_44_40
Last ObjectModification: 2016_07_12-AM-05_51_35

Theory : finite!sets


Home Index