Nuprl Lemma : intlex-cons-same

[l1,l2:ℤ List]. ∀[x:ℤ].  uiff(↑[x l1] ≤_lex [x l2];↑l1 ≤_lex l2)


Proof




Definitions occuring in Statement :  intlex: l1 ≤_lex l2 cons: [a b] list: List assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: guard: {T} or: P ∨ Q cand: c∧ B all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q false: False
Lemmas referenced :  assert_witness intlex_wf or_wf less_than_wf length_wf and_wf equal_wf assert_wf cons_wf uiff_wf member_wf list_wf iff_weakening_uiff intlex-cons less_than_irreflexivity intlex-by-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination intEquality rename sqequalRule inrFormation because_Cache cumulativity productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry addLevel independent_isectElimination dependent_functionElimination unionElimination voidElimination

Latex:
\mforall{}[l1,l2:\mBbbZ{}  List].  \mforall{}[x:\mBbbZ{}].    uiff(\muparrow{}[x  /  l1]  \mleq{}\_lex  [x  /  l2];\muparrow{}l1  \mleq{}\_lex  l2)



Date html generated: 2016_05_14-AM-06_47_47
Last ObjectModification: 2015_12_26-PM-00_24_51

Theory : list_0


Home Index