Nuprl Lemma : intlex-cons-same
∀[l1,l2:ℤ List]. ∀[x:ℤ].  uiff(↑[x / l1] ≤_lex [x / l2];↑l1 ≤_lex l2)
Proof
Definitions occuring in Statement : 
intlex: l1 ≤_lex l2
, 
cons: [a / b]
, 
list: T List
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
false: False
Lemmas referenced : 
assert_witness, 
intlex_wf, 
or_wf, 
less_than_wf, 
length_wf, 
and_wf, 
equal_wf, 
assert_wf, 
cons_wf, 
uiff_wf, 
member_wf, 
list_wf, 
iff_weakening_uiff, 
intlex-cons, 
less_than_irreflexivity, 
intlex-by-length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
intEquality, 
rename, 
sqequalRule, 
inrFormation, 
because_Cache, 
cumulativity, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
voidElimination
Latex:
\mforall{}[l1,l2:\mBbbZ{}  List].  \mforall{}[x:\mBbbZ{}].    uiff(\muparrow{}[x  /  l1]  \mleq{}\_lex  [x  /  l2];\muparrow{}l1  \mleq{}\_lex  l2)
Date html generated:
2016_05_14-AM-06_47_47
Last ObjectModification:
2015_12_26-PM-00_24_51
Theory : list_0
Home
Index