Nuprl Lemma : before-hd
∀[T:Type]. ∀L:T List. (∀x:T. (x before hd(L) ∈ L 
⇐⇒ False)) supposing (no_repeats(T;L) and 0 < ||L||)
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
no_repeats: no_repeats(T;l)
, 
length: ||as||
, 
hd: hd(l)
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
false: False
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
member-less_than, 
length_wf, 
no_repeats_witness, 
no_repeats_iff, 
l_before_wf, 
hd_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
no_repeats_wf, 
istype-less_than, 
list_wf, 
istype-universe, 
hd-before, 
l_before_member2, 
l_before_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
rename, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
productElimination, 
universeIsType, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  (\mforall{}x:T.  (x  before  hd(L)  \mmember{}  L  \mLeftarrow{}{}\mRightarrow{}  False))  supposing  (no\_repeats(T;L)  and  0  <  ||L||)
Date html generated:
2019_10_15-AM-10_23_34
Last ObjectModification:
2019_08_05-PM-02_11_41
Theory : list_1
Home
Index