Nuprl Lemma : comparison-antisym

[T:Type]. ∀cmp:comparison(T). AntiSym(T;x,y.0 ≤ (cmp y)) supposing ∀x,y:T.  (((cmp y) 0 ∈ ℤ (x y ∈ T))


Proof




Definitions occuring in Statement :  comparison: comparison(T) anti_sym: AntiSym(T;x,y.R[x; y]) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q apply: a natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a anti_sym: AntiSym(T;x,y.R[x; y]) implies:  Q comparison: comparison(T) and: P ∧ Q squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  comparison_wf equal_wf all_wf int_formula_prop_wf int_term_value_minus_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMinus_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int iff_weakening_equal true_wf squash_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution setElimination thin rename productElimination applyEquality lambdaEquality imageElimination lemma_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry intEquality natural_numberEquality dependent_functionElimination sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination because_Cache unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality functionEquality

Latex:
\mforall{}[T:Type]
    \mforall{}cmp:comparison(T).  AntiSym(T;x,y.0  \mleq{}  (cmp  x  y))  supposing  \mforall{}x,y:T.    (((cmp  x  y)  =  0)  {}\mRightarrow{}  (x  =  y))



Date html generated: 2016_05_14-PM-02_38_36
Last ObjectModification: 2016_01_15-AM-07_39_23

Theory : list_1


Home Index