Nuprl Lemma : decidable__l_exists-proof
∀[A:Type]. ∀[F:A ⟶ ℙ].  ∀L:A List. ((∀k:A. Dec(F[k])) ⇒ Dec((∃k∈L. F[k])))
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x]), 
list: T List, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
l_exists: (∃x∈L. P[x]), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
uimplies: b supposing a, 
guard: {T}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
list_wf, 
decidable_wf, 
all_wf, 
int_seg_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
select_wf, 
length_wf, 
decidable__exists_int_seg
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
natural_numberEquality, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
cumulativity, 
setElimination, 
rename, 
independent_isectElimination, 
because_Cache, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination, 
introduction, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[F:A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:A  List.  ((\mforall{}k:A.  Dec(F[k]))  {}\mRightarrow{}  Dec((\mexists{}k\mmember{}L.  F[k])))
Date html generated:
2016_05_14-AM-07_47_52
Last ObjectModification:
2016_01_15-AM-08_33_00
Theory : list_1
Home
Index