Nuprl Lemma : equiv-props_wf

[L:ℙ List]. (equiv-props(L) ∈ ℙ)


Proof




Definitions occuring in Statement :  equiv-props: equiv-props(L) list: List uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv-props: equiv-props(L) prop: so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top so_apply: x[s]
Lemmas referenced :  all_wf int_seg_wf length_wf iff_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality instantiate universeEquality hypothesisEquality hypothesis Error :lambdaEquality_alt,  because_Cache setElimination rename independent_isectElimination productElimination imageElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  Error :inhabitedIsType,  axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L:\mBbbP{}  List].  (equiv-props(L)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-01_50_10
Last ObjectModification: 2019_03_26-AM-10_21_04

Theory : list_1


Home Index