Nuprl Lemma : find-combine_wf
∀[T:Type]. ∀[cmp:T ⟶ ℤ]. ∀[l:T List].  (find-combine(cmp;l) ∈ T?)
Proof
Definitions occuring in Statement : 
find-combine: find-combine(cmp;l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
find-combine: find-combine(cmp;l)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_wf, 
unit_wf2, 
it_wf, 
value-type-has-value, 
int-value-type, 
ifthenelse_wf, 
eq_int_wf, 
lt_int_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
unionEquality, 
because_Cache, 
hypothesis, 
inrEquality, 
lambdaEquality, 
callbyvalueReduce, 
intEquality, 
independent_isectElimination, 
applyEquality, 
natural_numberEquality, 
inlEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[cmp:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[l:T  List].    (find-combine(cmp;l)  \mmember{}  T?)
Date html generated:
2016_05_14-PM-02_40_10
Last ObjectModification:
2015_12_26-PM-02_44_42
Theory : list_1
Home
Index