Nuprl Lemma : find-combine_wf

[T:Type]. ∀[cmp:T ⟶ ℤ]. ∀[l:T List].  (find-combine(cmp;l) ∈ T?)


Proof




Definitions occuring in Statement :  find-combine: find-combine(cmp;l) list: List uall: [x:A]. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T find-combine: find-combine(cmp;l) so_lambda: so_lambda(x,y,z.t[x; y; z]) has-value: (a)↓ uimplies: supposing a so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf unit_wf2 it_wf value-type-has-value int-value-type ifthenelse_wf eq_int_wf lt_int_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality unionEquality because_Cache hypothesis inrEquality lambdaEquality callbyvalueReduce intEquality independent_isectElimination applyEquality natural_numberEquality inlEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[cmp:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[l:T  List].    (find-combine(cmp;l)  \mmember{}  T?)



Date html generated: 2016_05_14-PM-02_40_10
Last ObjectModification: 2015_12_26-PM-02_44_42

Theory : list_1


Home Index