Nuprl Lemma : fseg-iseg-reverse
∀[T:Type]. ∀[L1,L2:T List].  (fseg(T;L1;L2) 
⇐⇒ rev(L1) ≤ rev(L2))
Proof
Definitions occuring in Statement : 
fseg: fseg(T;L1;L2)
, 
iseg: l1 ≤ l2
, 
reverse: rev(as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
iseg: l1 ≤ l2
, 
fseg: fseg(T;L1;L2)
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
top: Top
Lemmas referenced : 
exists_wf, 
list_wf, 
equal_wf, 
append_wf, 
reverse_wf, 
length_wf_nat, 
nat_wf, 
squash_wf, 
true_wf, 
reverse_append, 
iff_weakening_equal, 
reverse-reverse, 
subtype_rel_list, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
universeEquality, 
dependent_set_memberEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
equalityUniverse, 
levelHypothesis, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
dependent_pairFormation, 
hyp_replacement, 
applyLambdaEquality, 
setElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (fseg(T;L1;L2)  \mLeftarrow{}{}\mRightarrow{}  rev(L1)  \mleq{}  rev(L2))
Date html generated:
2017_04_17-AM-08_42_27
Last ObjectModification:
2017_02_27-PM-05_02_14
Theory : list_1
Home
Index