Nuprl Lemma : fseg-iseg-reverse

[T:Type]. ∀[L1,L2:T List].  (fseg(T;L1;L2) ⇐⇒ rev(L1) ≤ rev(L2))


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) iseg: l1 ≤ l2 reverse: rev(as) list: List uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  iseg: l1 ≤ l2 fseg: fseg(T;L1;L2) uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} top: Top
Lemmas referenced :  exists_wf list_wf equal_wf append_wf reverse_wf length_wf_nat nat_wf squash_wf true_wf reverse_append iff_weakening_equal reverse-reverse subtype_rel_list top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis lambdaEquality universeEquality dependent_set_memberEquality applyEquality imageElimination equalityTransitivity equalitySymmetry functionEquality equalityUniverse levelHypothesis because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination dependent_pairFormation hyp_replacement applyLambdaEquality setElimination rename isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (fseg(T;L1;L2)  \mLeftarrow{}{}\mRightarrow{}  rev(L1)  \mleq{}  rev(L2))



Date html generated: 2017_04_17-AM-08_42_27
Last ObjectModification: 2017_02_27-PM-05_02_14

Theory : list_1


Home Index