Nuprl Lemma : l_before_iseg

[T:Type]. ∀L1,L2:T List. ∀x,y:T.  (L1 ≤ L2  before y ∈ L1  before y ∈ L2)


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 l_before: before y ∈ l list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  l_before: before y ∈ l iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  length_wf_nat equal_wf nat_wf sublist_transitivity cons_wf nil_wf sublist_append1 sublist_wf exists_wf list_wf append_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut dependent_set_memberEquality hypothesis introduction extract_by_obid isectElimination cumulativity hypothesisEquality because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination hyp_replacement Error :applyLambdaEquality,  setElimination rename lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.  \mforall{}x,y:T.    (L1  \mleq{}  L2  {}\mRightarrow{}  x  before  y  \mmember{}  L1  {}\mRightarrow{}  x  before  y  \mmember{}  L2)



Date html generated: 2016_10_21-AM-10_08_07
Last ObjectModification: 2016_07_12-AM-05_27_09

Theory : list_1


Home Index