Nuprl Lemma : l_before_iseg
∀[T:Type]. ∀L1,L2:T List. ∀x,y:T.  (L1 ≤ L2 
⇒ x before y ∈ L1 
⇒ x before y ∈ L2)
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
l_before: x before y ∈ l
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
l_before: x before y ∈ l
, 
iseg: l1 ≤ l2
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
length_wf_nat, 
equal_wf, 
nat_wf, 
sublist_transitivity, 
cons_wf, 
nil_wf, 
sublist_append1, 
sublist_wf, 
exists_wf, 
list_wf, 
append_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
dependent_set_memberEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
hyp_replacement, 
Error :applyLambdaEquality, 
setElimination, 
rename, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.  \mforall{}x,y:T.    (L1  \mleq{}  L2  {}\mRightarrow{}  x  before  y  \mmember{}  L1  {}\mRightarrow{}  x  before  y  \mmember{}  L2)
Date html generated:
2016_10_21-AM-10_08_07
Last ObjectModification:
2016_07_12-AM-05_27_09
Theory : list_1
Home
Index