Nuprl Lemma : sublist_append1

[T:Type]. ∀L1,L2:T List.  L1 ⊆ L1 L2


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] sublist: L1 ⊆ L2 exists: x:A. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A prop: less_than: a < b cand: c∧ B squash: T guard: {T} true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] nat: so_apply: x[s]
Lemmas referenced :  length-append non_neg_length decidable__lt length_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf append_wf int_seg_wf id_increasing length_wf_nat equal_wf squash_wf true_wf select_wf int_seg_properties decidable__le select_append_front iff_weakening_equal increasing_wf all_wf length_append subtype_rel_list top_wf nat_properties list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation lambdaEquality sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesisEquality productElimination independent_pairFormation hypothesis cut sqequalRule introduction extract_by_obid isectElimination isect_memberEquality voidElimination voidEquality because_Cache dependent_functionElimination addEquality cumulativity unionElimination natural_numberEquality independent_isectElimination int_eqEquality intEquality computeAll applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality independent_functionElimination productEquality functionExtensionality applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    L1  \msubseteq{}  L1  @  L2



Date html generated: 2017_04_14-AM-09_29_43
Last ObjectModification: 2017_02_27-PM-04_01_56

Theory : list_1


Home Index