Nuprl Lemma : list-eq-subtype

[A:Type]. ∀[d1,d2:A List].  d1 d2 ∈ ({a:A| (a ∈ d1)}  List) supposing d1 d2 ∈ (A List)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop: so_apply: x[s] so_lambda: λ2x.t[x] true: True squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q implies:  Q
Lemmas referenced :  equal_wf list_wf list-eq-subtype1 l_member_wf list-subtype length_wf_nat nat_wf set_wf member_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache universeEquality isect_memberFormation sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaEquality independent_isectElimination dependent_set_memberEquality hyp_replacement Error :applyLambdaEquality,  instantiate setEquality setElimination rename natural_numberEquality applyEquality imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[d1,d2:A  List].    d1  =  d2  supposing  d1  =  d2



Date html generated: 2016_10_21-AM-10_01_26
Last ObjectModification: 2016_07_12-AM-05_23_38

Theory : list_1


Home Index