Nuprl Lemma : list-eq-subtype
∀[A:Type]. ∀[d1,d2:A List].  d1 = d2 ∈ ({a:A| (a ∈ d1)}  List) supposing d1 = d2 ∈ (A List)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
list_wf, 
list-eq-subtype1, 
l_member_wf, 
list-subtype, 
length_wf_nat, 
nat_wf, 
set_wf, 
member_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
universeEquality, 
isect_memberFormation, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
instantiate, 
setEquality, 
setElimination, 
rename, 
natural_numberEquality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[d1,d2:A  List].    d1  =  d2  supposing  d1  =  d2
Date html generated:
2016_10_21-AM-10_01_26
Last ObjectModification:
2016_07_12-AM-05_23_38
Theory : list_1
Home
Index