Nuprl Lemma : list-eq-subtype1

[A:Type]. ∀[B:A ⟶ ℙ]. ∀[d1,d2:{a:A| B[a]}  List].  d1 d2 ∈ ({a:A| B[a]}  List) supposing d1 d2 ∈ (A List)


Proof




Definitions occuring in Statement :  list: List uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] uimplies: supposing a prop: implies:  Q all: x:A. B[x] or: P ∨ Q cons: [a b] and: P ∧ Q top: Top not: ¬A false: False squash: T true: True uiff: uiff(P;Q) guard: {T}
Lemmas referenced :  list_induction uall_wf list_wf isect_wf equal_wf subtype_rel_list equal-wf-base-T cons_wf set_wf list-cases nil_wf product_subtype_list null_nil_lemma btrue_wf and_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse squash_wf true_wf cons_one_one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination setEquality cumulativity hypothesisEquality applyEquality functionExtensionality hypothesis because_Cache sqequalRule lambdaEquality independent_isectElimination setElimination rename independent_functionElimination baseClosed isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation dependent_functionElimination functionEquality universeEquality unionElimination promote_hyp hypothesis_subsumption productElimination dependent_set_memberEquality independent_pairFormation applyLambdaEquality voidElimination voidEquality imageElimination natural_numberEquality imageMemberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d1,d2:\{a:A|  B[a]\}    List].    d1  =  d2  supposing  d1  =  d2



Date html generated: 2017_04_14-AM-09_27_01
Last ObjectModification: 2017_02_27-PM-04_00_58

Theory : list_1


Home Index