Nuprl Lemma : list-eq-subtype1
∀[A:Type]. ∀[B:A ⟶ ℙ]. ∀[d1,d2:{a:A| B[a]}  List].  d1 = d2 ∈ ({a:A| B[a]}  List) supposing d1 = d2 ∈ (A List)
Proof
Definitions occuring in Statement : 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
cons: [a / b]
, 
and: P ∧ Q
, 
top: Top
, 
not: ¬A
, 
false: False
, 
squash: ↓T
, 
true: True
, 
uiff: uiff(P;Q)
, 
guard: {T}
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
isect_wf, 
equal_wf, 
subtype_rel_list, 
equal-wf-base-T, 
cons_wf, 
set_wf, 
list-cases, 
nil_wf, 
product_subtype_list, 
null_nil_lemma, 
btrue_wf, 
and_wf, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
squash_wf, 
true_wf, 
cons_one_one
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
setElimination, 
rename, 
independent_functionElimination, 
baseClosed, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
dependent_functionElimination, 
functionEquality, 
universeEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d1,d2:\{a:A|  B[a]\}    List].    d1  =  d2  supposing  d1  =  d2
Date html generated:
2017_04_14-AM-09_27_01
Last ObjectModification:
2017_02_27-PM-04_00_58
Theory : list_1
Home
Index