Nuprl Lemma : select-le-imax-list

L:ℤ List. ∀i:ℕ||L||.  (L[i] ≤ imax-list(L))


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) select: L[n] length: ||as|| list: List int_seg: {i..j-} le: A ≤ B all: x:A. B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: iff: ⇐⇒ Q rev_implies:  Q l_exists: (∃x∈L. P[x])
Lemmas referenced :  imax-list-ub select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le int_seg_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination because_Cache independent_isectElimination setElimination rename productElimination hypothesis imageElimination unionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType intEquality

Latex:
\mforall{}L:\mBbbZ{}  List.  \mforall{}i:\mBbbN{}||L||.    (L[i]  \mleq{}  imax-list(L))



Date html generated: 2019_10_15-AM-10_21_27
Last ObjectModification: 2019_06_26-PM-01_48_42

Theory : list_1


Home Index