Nuprl Lemma : test_sqtype1

[X,Y:Type].  (SQType((n:ℕ × {L:𝔹 List| True} ? × (X Y)) List)) supposing ((Y ⊆Base) and (X ⊆Base))


Proof




Definitions occuring in Statement :  list: List nat: bool: 𝔹 sq_type: SQType(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] true: True unit: Unit set: {x:A| B[x]}  product: x:A × B[x] union: left right base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} prop: so_lambda: λ2x.t[x] so_apply: x[s] nat:
Lemmas referenced :  subtype_rel_wf base_wf equal_wf list_wf nat_wf bool_wf true_wf unit_wf2 le_wf subtype_base_sq list_subtype_base product_subtype_base union_subtype_base set_subtype_base int_subtype_base bool_subtype_base unit_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality sqequalAxiom hypothesis because_Cache extract_by_obid isectElimination cumulativity isect_memberEquality equalityTransitivity equalitySymmetry universeEquality productEquality unionEquality setEquality intEquality natural_numberEquality instantiate independent_isectElimination lambdaFormation

Latex:
\mforall{}[X,Y:Type].
    (SQType((n:\mBbbN{}  \mtimes{}  \{L:\mBbbB{}  List|  True\}  ?  \mtimes{}  (X  +  Y))  List))  supposing  ((Y  \msubseteq{}r  Base)  and  (X  \msubseteq{}r  Base))



Date html generated: 2017_04_14-AM-09_27_38
Last ObjectModification: 2017_02_27-PM-04_01_07

Theory : list_1


Home Index