Nuprl Lemma : upto_equal_nil

[n:ℕ]. uiff(upto(n) [] ∈ (ℤ List);n 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  upto: upto(n) nil: [] list: List nat: uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a nat: int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] squash: T prop: label: ...$L... t true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q sq_type: SQType(T) all: x:A. B[x]
Lemmas referenced :  upto_is_nil subtype_base_sq list_wf int_seg_wf list_subtype_base set_subtype_base lelt_wf int_subtype_base equal_wf squash_wf true_wf sqequal-nil nil_wf iff_weakening_equal equal-wf-T-base upto_wf subtype_rel_list nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_isectElimination instantiate cumulativity natural_numberEquality setElimination rename hypothesis because_Cache sqequalRule intEquality lambdaEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination independent_pairEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  uiff(upto(n)  =  [];n  =  0)



Date html generated: 2017_04_17-AM-07_57_26
Last ObjectModification: 2017_02_27-PM-04_29_04

Theory : list_1


Home Index