Nuprl Lemma : add_assoc_int_mod
∀[n:ℤ]. ∀[x,y,z:ℤ_n].  (((x + y) + z) = (x + y + z) ∈ ℤ_n)
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_mod: ℤ_n
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
eqmod_wf, 
int_mod_wf, 
istype-int, 
quotient-member-eq, 
eqmod_equiv_rel, 
general_add_assoc, 
eqmod_refl, 
eqmod_functionality_wrt_eqmod, 
add_functionality_wrt_eqmod, 
eqmod_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
thin, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
rename, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
productIsType, 
sqequalBase, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
intEquality, 
lambdaEquality_alt, 
independent_isectElimination, 
addEquality, 
Error :memTop
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[x,y,z:\mBbbZ{}\_n].    (((x  +  y)  +  z)  =  (x  +  y  +  z))
Date html generated:
2020_05_19-PM-10_02_47
Last ObjectModification:
2020_01_01-AM-10_07_14
Theory : num_thy_1
Home
Index