Nuprl Lemma : add_inverse_int_mod

[n:ℤ]. ∀[x:ℤ_n].  ((x (-x)) 0 ∈ ℤ_n)


Proof




Definitions occuring in Statement :  int_mod: _n uall: [x:A]. B[x] add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_mod: _n quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  eqmod_wf int_mod_wf istype-int quotient-member-eq eqmod_equiv_rel minus-one-mul add-mul-special zero-mul eqmod_refl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache hypothesis sqequalRule pertypeElimination promote_hyp thin productElimination equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt rename universeIsType extract_by_obid isectElimination hypothesisEquality equalityIstype dependent_functionElimination independent_functionElimination productIsType sqequalBase isect_memberEquality_alt axiomEquality isectIsTypeImplies intEquality lambdaEquality_alt independent_isectElimination addEquality minusEquality natural_numberEquality Error :memTop

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[x:\mBbbZ{}\_n].    ((x  +  (-x))  =  0)



Date html generated: 2020_05_19-PM-10_02_43
Last ObjectModification: 2020_01_01-AM-10_07_19

Theory : num_thy_1


Home Index