Nuprl Lemma : chrem_exists_aux_a

r:ℕ+. ∀s:{s':ℕ+CoPrime(r,s')} .  (∃x:ℤ [((x ≡ mod r) ∧ (x ≡ mod s))])


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m coprime: CoPrime(a,b) nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + prop: sq_stable: SqStable(P) implies:  Q squash: T iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] sq_exists: x:A [B[x]] top: Top eqmod: a ≡ mod m subtract: m divides: a decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False subtype_rel: A ⊆B
Lemmas referenced :  coprime_wf nat_plus_wf sq_stable__coprime coprime_bezout_id eqmod_wf istype-void minus-add minus-one-mul add-swap add-commutes add-mul-special zero-mul add-zero minus-zero nat_plus_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf itermMinus_wf istype-int int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_minus_lemma int_formula_prop_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :setIsType,  Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesis dependent_functionElimination independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination productElimination Error :dependent_set_memberFormation_alt,  multiplyEquality Error :productIsType,  natural_numberEquality because_Cache equalitySymmetry hyp_replacement applyLambdaEquality productEquality Error :isect_memberEquality_alt,  voidElimination minusEquality independent_pairFormation Error :dependent_pairFormation_alt,  unionElimination independent_isectElimination approximateComputation Error :lambdaEquality_alt,  int_eqEquality Error :equalityIsType4,  equalityTransitivity applyEquality

Latex:
\mforall{}r:\mBbbN{}\msupplus{}.  \mforall{}s:\{s':\mBbbN{}\msupplus{}|  CoPrime(r,s')\}  .    (\mexists{}x:\mBbbZ{}  [((x  \mequiv{}  1  mod  r)  \mwedge{}  (x  \mequiv{}  0  mod  s))])



Date html generated: 2019_06_20-PM-02_24_56
Last ObjectModification: 2018_10_03-AM-00_13_17

Theory : num_thy_1


Home Index